Predictive Property of Hidden Representations in Recurrent Neural Network Language Models
نویسندگان
چکیده
The hidden representation of a recurrent neural network language model (RNNLM) is regarded as a summary of the past input sequence. In this study, we propose that the hidden representation also consists of the expectation about upcoming inputs. A RNNLM is originally trained to predict the next word or character, but we experimentally discover, even for an unmodified RNNLM, the farther sequences can also be predicted given the activation of the hidden neurons. This property makes the hidden activation a summary of the local context covering both the past and the near future, which may benefit some language processing tasks which did not previously take advantage of language models. Dimensionality reduction approach is also briefly considered to facilitate the practical application of the predictive property.
منابع مشابه
Inner Attention based Recurrent Neural Networks for Answer Selection
Attention based recurrent neural networks have shown advantages in representing natural language sentences (Hermann et al., 2015; Rocktäschel et al., 2015; Tan et al., 2015). Based on recurrent neural networks (RNN), external attention information was added to hidden representations to get an attentive sentence representation. Despite the improvement over nonattentive models, the attention mech...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملFeedforward Sequential Memory Neural Networks without Recurrent Feedback
We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped with learnable sequential memory blocks in the hidden layers. In this work, we have applied FSMN to several language modeling (LM) tasks. Experime...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کامل